237 research outputs found

    Selection of Gate Dielectrics for ZnO Based Thin-Film Transistors

    Get PDF
    The bulk of semiconductor technology has been based on silicon till today. But silicon has its own limitations. It is not transparent to visible light and hence it cannot be used in certain applications. ZnO is a material which is transparent to visible light. In this paper, we compare the electrical performance of ZnO Thin film Transistors using different gate insulators. Certain performance indices and material indices were considered as the selection criteria for electrical performance. A methodology known as Ashby’s approach was adopted to find out the best gate insulators and based on this methodology various charts were plotted to compare different properties of competing materials. This work concludes that Y2O3 is the best insulator followed by ZrO2 and HfO2

    Online Learning Models for Content Popularity Prediction In Wireless Edge Caching

    Full text link
    Caching popular contents in advance is an important technique to achieve the low latency requirement and to reduce the backhaul costs in future wireless communications. Considering a network with base stations distributed as a Poisson point process (PPP), optimal content placement caching probabilities are derived for known popularity profile, which is unknown in practice. In this paper, online prediction (OP) and online learning (OL) methods are presented based on popularity prediction model (PPM) and Grassmannian prediction model (GPM), to predict the content profile for future time slots for time-varying popularities. In OP, the problem of finding the coefficients is modeled as a constrained non-negative least squares (NNLS) problem which is solved with a modified NNLS algorithm. In addition, these two models are compared with log-request prediction model (RPM), information prediction model (IPM) and average success probability (ASP) based model. Next, in OL methods for the time-varying case, the cumulative mean squared error (MSE) is minimized and the MSE regret is analyzed for each of the models. Moreover, for quasi-time varying case where the popularity changes block-wise, KWIK (know what it knows) learning method is modified for these models to improve the prediction MSE and ASP performance. Simulation results show that for OP, PPM and GPM provides the best ASP among these models, concluding that minimum mean squared error based models do not necessarily result in optimal ASP. OL based models yield approximately similar ASP and MSE, while for quasi-time varying case, KWIK methods provide better performance, which has been verified with MovieLens dataset.Comment: 9 figure, 29 page

    Selection of Gate Dielectrics for ZnO Based Thin-Film Transistors

    Full text link
    The bulk of semiconductor technology has been based on silicon till today. But silicon has its own limitations. It is not transparent to visible light and hence it cannot be used in certain applications. ZnO is a material which is transparent to visible light. In this paper, we compare the electrical performance of ZnO Thin film Transistors using different gate insulators. Certain performance indices and material indices were considered as the selection criteria for electrical performance. A methodology known as Ashby\u27s approach was adopted to find out the best gate insulators and based on this methodology various charts were plotted to compare different properties of competing materials. This work concludes that Y2O3 is the best insulator followed by ZrO2 and HfO2

    Content Placement Learning for Success Probability Maximization in Wireless Edge Caching Networks

    Get PDF

    Rate-Energy Balanced Precoding Design for SWIPT based Two-Way Relay Systems

    Get PDF
    Simultaneous wireless information and power transfer (SWIPT) technique is a popular strategy to convey both information and RF energy for harvesting at receivers. In this regard, we consider a two-way relay system with multiple users and a multi-antenna relay employing SWIPT strategy, where splitting the received signal leads to a rate-energy trade-off. In literature, the works on transceiver design have been studied using computationally intensive and suboptimal convex relaxation based schemes. In this paper, we study the balanced precoder design using chordal distance (CD) decomposition, which incurs much lower complexity, and is flexible to dynamic energy requirements. It is analyzed that given a non-negative value of CD, the achieved harvested energy for the proposed balanced precoder is higher than that for the perfect interference alignment (IA) precoder. The corresponding loss in sum rates is also analyzed via an upper bound. Simulation results add that the IA schemes based on mean-squared error are better suited for the SWIPT maximization than the subspace alignment-based methods.Comment: arXiv admin note: text overlap with arXiv:2101.1216

    Motivating Persons Living with Diabetes for Insulin/Injectable Therapy

    Get PDF
    Motivating patients to initiate or intensify insulin is a challenging aspect of diabetes practice. This paper reviews certain motivational strategies and methods used for insulin initiation/intensification. It places various domains of motivational interviewing in perspective, under a single umbrella, making it easier for practitioners to understand the art and science of insulin motivation

    Motivating Persons Living with Diabetes for Insulin/Injectable Therapy

    Get PDF
    Motivating patients to initiate or intensify insulin is a challenging aspect of diabetes practice. This paper reviews certain motivational strategies and methods used for insulin initiation/intensification. It places various domains of motivational interviewing in perspective, under a single umbrella, making it easier for practitioners to understand the art and science of insulin motivation
    • …
    corecore